题目内容

已知m>0,p:(x+2)(x-3)≤0,q:1-m≤x≤1+m.
(I)若¬q是¬p的必要条件,求实数m的取值范围;
(II)若m=7,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
考点:必要条件、充分条件与充要条件的判断,命题的真假判断与应用
专题:计算题
分析:(I)m>0,p:(x+2)(x-3)≤0,q:1-m≤x≤1+m,分别求出命题p和q,根据¬q是¬p的必要条件,可得q⇒p,从而求出m的范围;
(II)m=7,代入命题q,求出m的范围,“p或q”为真命题,“p且q”为假命题,可知p与q一真一假,分类讨论进行求解;
解答: 解:(I)m>0,p:(x+2)(x-3)≤0,q:1-m≤x≤1+m,
∴p:-2≤x≤3,q:1-m≤x≤1+m,
∵¬q是¬p的必要条件,q⇒p,
1+m≤3
1-m≥-2
解得m≤2,
当m=2时,q:-1≤x≤3,满足题意;
综上:0<m≤2;
(II)若m=7,可得q:-6≤x≤8,
∵“p或q”为真命题,“p且q”为假命题,
∴p与q有一个为真,一个为假,∵p:-2≤x≤3,
若p真q假可得,x为空集;
若p假q真可得,-6≤x<-2或3<x≤8;
点评:此题主要考查命题真假的判断,以及充分必要条件的定义,解题过程中用到了分类讨论的思想,是一道基础题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网