题目内容

13.已知函数$f(x)=\sqrt{3}sin(x+\frac{π}{4})$,x∈R
(1)求f(x)的单调增区间;
(2)已知A、B、C是△ABC的内角,且满足$f(B)=\sqrt{3}$,求$\sqrt{2}$cosA+cosC 的最大值.

分析 (1)利用正弦函数的单调区间,求f(x)的单调增区间;
(2)利用$A+C=\frac{3}{4}π$,将所求式转换,即可求$\sqrt{2}$cosA+cosC 的最大值.

解答 解:(1)令$-\frac{π}{2}+2kπ≤x+\frac{π}{4}≤\frac{π}{2}+2kπ,k∈Z$,得$-\frac{3π}{4}+2kπ≤x≤\frac{π}{4}+2kπ,k∈Z$
∴f(x)的单调增区间是$[-\frac{3π}{4}+2kπ,\frac{π}{4}+2kπ](k∈Z)$…(5分)
(2)$f(B)=\sqrt{3}$,即$sin(B+\frac{π}{4})=1$,因为角B是三角形的内角,所以B=$\frac{π}{4}$…(6分)
∵A+B+C=π,∴$A+C=\frac{3}{4}π$…(7分)
∴$\sqrt{2}cosA+cosC$=$\sqrt{2}cosA+(-\frac{{\sqrt{2}}}{2}cosA)+\frac{{\sqrt{2}}}{2}sinA$=$\frac{{\sqrt{2}}}{2}cosA+\frac{{\sqrt{2}}}{2}sinA$=$sin(A+\frac{π}{4})$(10分)
∵$A+C=\frac{3}{4}π$∴$A\;∈\;(0,\frac{3}{4}π)$…(11分)
∴$A+\frac{π}{4}\;∈\;(\frac{π}{4},π)$…(12分)
∴$sin(A+\frac{π}{4})$最大值为1,即$\sqrt{2}cosA+cosC$最大值为1      …(14分)

点评 本题考查三角函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网