ÌâÄ¿ÄÚÈÝ
3£®Ä³ÖÐѧΪÁ˽â¸ßÖÐÈëѧÐÂÉúµÄÉí¸ßÇé¿ö£¬´Ó¸ßÒ»Ä꼶ѧÉúÖа´·Ö²ã³éÑù¹²³éÈ¡ÁË50ÃûѧÉúµÄÉí¸ßÊý¾Ý£¬·Ö×éͳ¼ÆºóµÃµ½ÁËÕâ50ÃûѧÉúÉí¸ßµÄƵÊý·Ö²¼±í£º| Éí¸ß£¨cm£©·Ö×é | [145£¬155£© | [155£¬165£© | [165£¬175£© | [175£¬185] |
| ÄÐÉúƵÊý | 1 | 5 | 12 | 4 |
| Å®ÉúƵÊý | 7 | 15 | 4 | 2 |
£¨¢ò£©¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²î£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨¢ó£©ÏÖ´ÓÉí¸ßÔÚ[175£¬185]Õâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3Ãû£¬ÇóÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©ÓÉÆµÂÊ·Ö²¼±íÄÜ×÷³öÕâ50ÃûѧÉúÉí¸ßµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ò£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÄܹÀ¼ÆÕâ50ÃûѧÉúµÄƽ¾ùÉí¸ß£¬²¢ÄܹÀ¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²î£®
£¨¢ó£©¼ÇÉí¸ßÔÚ[175£¬185]µÄ4ÃûÄÐÉúΪa£¬b£¬c£¬d£¬2ÃûÅ®ÉúΪA£¬B£®ÀûÓÃÁоٷ¨ÄÜÇó³ö´ÓÕâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3ÃûѧÉú£¬ÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©Õâ50ÃûѧÉúÉí¸ßµÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçÏÂͼËùʾ£º![]()
£¨¢ò£©ÓÉÌâÒâ¿É¹À¼ÆÕâ50ÃûѧÉúµÄƽ¾ùÉí¸ßΪ$\overline x=\frac{150¡Á8+160¡Á20+170¡Á16+180¡Á6}{50}$=164£®
ËùÒÔ¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²îΪs2=$\frac{{8{{£¨{150-164}£©}^2}+20{{£¨{160-164}£©}^2}+16{{£¨{170-164}£©}^2}+6{{£¨{180-164}£©}^2}}}{50}$=80£®
ËùÒÔ¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²îΪ80£®
£¨¢ó£©¼ÇÉí¸ßÔÚ[175£¬185]µÄ4ÃûÄÐÉúΪa£¬b£¬c£¬d£¬2ÃûÅ®ÉúΪA£¬B£®
´ÓÕâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3ÃûѧÉúµÄÇé¿öÓУº
{a£¬b£¬c}£¬{a£¬b£¬d}£¬{a£¬c£¬d}£¬{b£¬c£¬d}£¬{a£¬b£¬A}£¬{a£¬b£¬B}£¬
{a£¬c£¬A}£¬{a£¬c£¬B}£¬{a£¬d£¬A}£¬{a£¬d£¬B}£¬{b£¬c£¬A}£¬{b£¬c£¬B}£¬
{b£¬d£¬A}£¬{b£¬d£¬B}£¬{c£¬d£¬A}£¬{c£¬d£¬B}£¬{a£¬A£¬B}£¬{b£¬A£¬B}£¬
{c£¬A£¬B}£¬{d£¬A£¬B}¹²20¸ö»ù±¾Ê¼þ£®
ÆäÖÐÖÁÉٳ鵽1ÃûÅ®ÉúµÄÇé¿öÓУº
{a£¬b£¬A}£¬{a£¬b£¬B}£¬{a£¬c£¬A}£¬{a£¬c£¬B}£¬{a£¬d£¬A}£¬{a£¬d£¬B}£¬
{b£¬c£¬A}£¬{b£¬c£¬B}£¬{b£¬d£¬A}£¬{b£¬d£¬B}£¬{c£¬d£¬A}£¬{c£¬d£¬B}£¬
{a£¬A£¬B}£¬{b£¬A£¬B}£¬{c£¬A£¬B}£¬{d£¬A£¬B}¹²16¸ö»ù±¾Ê¼þ£®
ËùÒÔÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊΪ$\frac{16}{20}=\frac{4}{5}$£®
µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®
| ·Ö×é | [10£¬20£© | [20£¬30£© | [30£¬40£© | [40£¬50£© | [50£¬60£© | [60£¬70£© |
| ƵÊý | 5 | 4 | 3 | 2 | 4 | 2 |
| A£® | 0.70 | B£® | 0.60 | C£® | 0.45 | D£® | 0.35 |
| תËÙx£¨×ª/Ã룩 | 16 | 14 | 12 | 8 |
| ÿСʱÉú²úÓÐȱµãµÄÁã¼þÊýy£¨¼þ£© | 11 | 9 | 8 | 5 |
£¨¢ò£©¸ù¾ÝÉ¢µãͼÅжϣ¬y=ax+bÓë$y=c\sqrt{x}+d$ÄÄÒ»¸öÊÊÒË×÷ΪÿСʱÉú²úµÄÁã¼þÖÐÓÐȱµãµÄÁã¼þÊýy¹ØÓÚתËÙxµÄ»Ø¹é·½³ÌÀàÐÍ £¨¸ø³öÅжϼ´¿É£¬²»±ØËµÃ÷ÀíÓÉ£©£¬¸ù¾ÝÅжϽá¹û¼°±íÖÐÊý¾Ý£¬½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»
£¨¢ó£©Èôʵ¼ÊÉú²úÖУ¬ÔÊÐíÿСʱÉú²úµÄÁã¼þÖÐÓÐȱµãµÄÁã¼þÊý×î¶àΪ10¸ö£¬ÄÇô»úÆ÷µÄÔËתËÙ¶ÈÓ¦¿ØÖÆÔÚʲô·¶Î§ÄÚ£¿
£¨²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£®£©
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | -2 | D£® | $-\frac{1}{2}$ |
| A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{3}}}{3}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\frac{{\sqrt{2}}}{4}$ |