题目内容
12.设集合A1={a1},A2={a2,a3},A3={a4,a5,a6},A4={a7,a8,a9,a10},…,其中{an}为公差大于0的等差数列,若A2={3,5},则199属于( )| A. | A12 | B. | A13 | C. | A14 | D. | A15 |
分析 由已知条件求出a1=1,d=2,从而an=2n-1,由an=2n-1=199,解得n=100,由此能求出结果.
解答 解:∵{an}为公差大于0的等差数列,A2═{a2,a3}={3,5},
∴$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+d=3}\\{{a}_{3}={a}_{1}+2d=5}\end{array}\right.$,
解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1,
由an=2n-1=199,解得n=100,
∵1+2+3+4+5+6+7+8+9+10+11+12+13=91,
1+2+3+4+5+6+7+8+9+10+11+12+13+14=105,
∴199∈A14.
故选:C.
点评 本题考查元素是哪个集合的元素的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
3.某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了50名学生的身高数据,分组统计后得到了这50名学生身高的频数分布表:
(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在[175,185]这6名学生中随机抽取3名,求至少抽到1名女生的概率.
| 身高(cm)分组 | [145,155) | [155,165) | [165,175) | [175,185] |
| 男生频数 | 1 | 5 | 12 | 4 |
| 女生频数 | 7 | 15 | 4 | 2 |
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在[175,185]这6名学生中随机抽取3名,求至少抽到1名女生的概率.
20.某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:°C)的数据,如下表:
(1)求出y与x的回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6°C,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2,求P(3.8<X<13.4).
附:①回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
(2)判断y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6°C,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2,求P(3.8<X<13.4).
附:①回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
1.已知sinα-cosα=$\frac{1}{3}$,则cos($\frac{π}{2}$-2α)=( )
| A. | -$\frac{8}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{8}{9}$ | D. | $\frac{\sqrt{17}}{9}$ |
2.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相切时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{2}+1}}{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{5}-1$ |