题目内容
7.设集合M={1,2,3},N={z|z=x+y,x∈M,y∈M},则集合N中的元素个数为( )| A. | 3 | B. | 5 | C. | 6 | D. | 9 |
分析 求出N,可得集合N中的元素个数.
解答 解:由题意,N={1,4,6,3,5},
∴集合N中的元素个数为5,
故选B.
点评 本题考查集合的含义,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
17.双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点P,其中C1与C3有一个共同的焦点,若M为F1P的中点,则双曲线C1的离心率为( )
| A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}$ |
18.要得到函数$y=sin(\frac{π}{4}-3x)$的图象,只需要将函数y=sin3x的图象( )m.
| A. | 向右平移$\frac{π}{4}$个单位 | B. | 向左平移$\frac{π}{4}$个单位 | ||
| C. | 向右平移$\frac{π}{12}$个单位 | D. | 向左平移$\frac{π}{12}$个单位 |
2.5名学生站成一排照相,甲、乙之间必须间隔一人的排法共( )
| A. | 12种 | B. | 18种 | C. | 24种 | D. | 36种 |
12.已知函数f(x)=x(a-e-x),曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是( )
| A. | (-e2,+∞) | B. | (-e2,0) | C. | (-e-2,+∞) | D. | (-e-2,0) |
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点坐标为(2$\sqrt{3}$,0)则实数a的值为( )
| A. | 8 | B. | 2$\sqrt{2}$ | C. | 16 | D. | 4 |
16.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,则$\frac{2y}{2x+1}$的取值范围是( )
| A. | [$\frac{4}{3}$,4] | B. | [$\frac{4}{3}$,4) | C. | [2,4] | D. | (2,4] |
17.已知x,y∈R,满足x2+2xy+4y2=6,则z=x+y的取值范围为( )
| A. | [-$\sqrt{2}$,$\sqrt{2}$] | B. | [-$\sqrt{2}$,$\sqrt{6}$] | C. | [-$\sqrt{6}$,$\sqrt{6}$] | D. | [-$\sqrt{6}$,$\sqrt{2}$] |