题目内容

12.已知函数f(x)=x(a-e-x),曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是(  )
A.(-e2,+∞)B.(-e2,0)C.(-e-2,+∞)D.(-e-2,0)

分析 由曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,故f′(x)=a+(x-1)e-x=0有两个不同的解,即得a=(1-x)e-x有两个不同的解,即可解出a的取值范围.

解答 解:∵曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,
∴f′(x)=a+(x-1)e-x=0有两个不同的解,即得a=(1-x)e-x有两个不同的解,
设y=(1-x)e-x,则y′=(x-2)e-x,∴x<2,y′<0,x>2,y′>0
∴x=2时,函数取得极小值-e-2
∴0>a>-e-2
故选D.

点评 本题主要考查了利用导数研究曲线上某点切线方程,函数零点等有关基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网