题目内容
2.分析 根据所给的数据做出直观图形的面积,根据直观图的面积:原图的面积=$\frac{\sqrt{2}}{4}$,得到原图形的面积是12÷$\frac{\sqrt{2}}{4}$,得到结果.
解答 解:∵矩形O'A'B'C'是一个平面图形的直观图,其中O'A'=6,O'C'=2,
∴直观图的面积是6×2=12
∵直观图的面积:原图的面积=1:2$\sqrt{2}$,
∴原图形的面积是12÷$\frac{\sqrt{2}}{4}$=24$\sqrt{2}$.
故答案为24$\sqrt{2}$.
点评 本题考查平面图形的直观图,本题解题的关键是知道两个图形的面积之间的关系,遇到类似的题目只要利用公式求出即可.
练习册系列答案
相关题目
12.已知2sinxtanx=3,(-π<x<0),则x=( )
| A. | $-\frac{π}{3}$ | B. | $-\frac{π}{6}$ | C. | $-\frac{5π}{6}$ | D. | $-\frac{2π}{3}$ |
13.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则( )
| A. | y1<y2<y3 | B. | y3<y2<y1 | C. | y3<y1<y2 | D. | y2<y3<y1 |
7.各项都是正数的等比数列{an}的公比q≠1,a3,a5,a6成等差数列,则$\frac{{{a_3}+{a_4}}}{{{a_4}+{a_5}}}$=( )
| A. | $\frac{{-1+\sqrt{3}}}{2}$ | B. | $\frac{{-1+\sqrt{5}}}{2}$ | C. | $\frac{{1+\sqrt{5}}}{2}$ | D. | $2+\sqrt{5}$ |