题目内容
13.设Sn是数列的前n项和,已知a1=3,an+1=2Sn+3(n∈N*).(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an,求数列{bn}的前n项和Tn.
分析 (1)利用数列的递推关系式推出数列是等比数列,然后求解通项公式.
(2)化简数列的通项公式,利用错位相减法求和,求解即可.
解答 解:(1)当n≥2时,由an+1=2Sn+3,得an=2Sn-1+3,(1分)
两式相减,得an+1-an=2sn-2sn-1=2an,∴an+1=3an,$\frac{{a}_{n+1}}{{a}_{n}}=3$,(3分)
当n=1时,a1=3,a2=2S1+3=9,则$\frac{{a}_{2}}{{a}_{1}}=3$.
∴数列{an}是以3为首项,3 为公比的等比数列,(5分)
∴an=3n.(6分)
(2)由(1)得bn=(2n-1)an=(2n-1)3n.
∴Tn=1×3+3×32+5×33+…+(2n-1)3n,
3Tn=1×32+3×33+5×34+…+(2n-1)3n+1,
错位相减得:-2Tn=1×3+2×32+2×33+…+2×3n-(2n-1)3n+1,(9分)
=-6-(2n-2)3n+1 (11分)
∴${T_n}=(n-1)×{3^{n+1}}+3$. (12分)
点评 本题考查数列的递推关系式定义域,通项公式的求法,数列求和的方法,考查计算能力.
练习册系列答案
相关题目
4.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.
| 使用年数 | 2 | 4 | 6 | 8 | 10 |
| 售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.
8.一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{8}{27}$ | D. | $\frac{12}{27}$ |
18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是( )
| A. | a<b<c | B. | a>b>c | C. | c>a>b | D. | a<c<b |
5.已知函数f(x)是定义在[0,+∞)上的增函数,则满足不等式f(2x-1)<f($\frac{1}{3}$)的实数x的取值范围是( )
| A. | (-∞,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |