题目内容

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

分析 利用诱导公式,两角差的正弦函数公式,二倍角的正切函数公式化简,进而利用正弦函数的单调性及单位圆即可得解.

解答 解:∵a=cos61°•cos127°+cos29°•cos37°=-cos61°•sin37°+sin61°•cos37°=sin(61°-37°)=sin24°,
$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$=sin26°,
$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$=sin25°,
∴由y=sinx在(0°,90°)单调递增,利用单位圆的知识可得:sin24°<sin25°<sin26°<tan26°,
∴a<c<b.
故选:D.

点评 本题主要考查了诱导公式,两角差的正弦函数公式,二倍角的正切函数公式,正弦函数的单调性的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网