题目内容
2.已知实数x>0,y>0,且满足x+y=1,则$\frac{2}{x}$+$\frac{x}{y}$的最小值为2+2$\sqrt{2}$.分析 实数x>0,y>0,且满足x+y=1,可得$\frac{2}{x}$+$\frac{x}{y}$=$\frac{2(x+y)}{y}+\frac{x}{y}$=2+$\frac{2y}{x}+\frac{x}{y}$,利用基本不等式的性质即可得出.
解答 解:∵实数x>0,y>0,且满足x+y=1,
则$\frac{2}{x}$+$\frac{x}{y}$=$\frac{2(x+y)}{y}+\frac{x}{y}$=2+$\frac{2y}{x}+\frac{x}{y}$≥2+2$\sqrt{\frac{2y}{x}•\frac{x}{y}}$=2+2$\sqrt{2}$,当且仅当x=$\sqrt{2}$y=2-$\sqrt{2}$时取等号.
故答案为:2+2$\sqrt{2}$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.两个实习生每人加工一个零件,加工为一等品的概率分别为$\frac{2}{3}$和$\frac{1}{2}$,两个零件是否加工为一等品相互独立,则这两个零件中至少有一个加工为一等品的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{5}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
10.要把半径为半圆形木料截成长方形,为了使长方形截面面积最大,则图中的α=( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{6}$ |
17.已知数列{an}是以$\frac{1}{2}$为公差的等差数列,数列{bn}的前n项和为Sn,满足bn=2sin(πan+φ),φ∈(0,$\frac{π}{2}$),则Sn不可能是( )
| A. | -1 | B. | 0 | C. | 2 | D. | 3 |
14.在区间[-1,1]上随机取一个数x,x2的值介于0到$\frac{1}{4}$之间的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0处的导数值为( )
| A. | 0 | B. | 1002 | C. | 200 | D. | 100×99×…×2×1 |