题目内容

7.如图,已知正三棱锥A-BCD中,E、F分别是棱AB、BC的中点,EF⊥DE,且BC=2.
(1)求此正三棱锥的体积;
(2)求DE与平面ABC所成角的余弦值.

分析 (1)由题意判定正三棱锥的形状,三条侧棱两两垂直,推出是正方体的一个角,然后转化顶点和底面从而求其体积.
(2)由(1)可知DA⊥平面ABC,∠DEA是DE与平面ABC所成角,即可求DE与平面ABC所成角的余弦值.

解答 解:(1)∵EF∥AC,EF⊥DE,
∴AC⊥DE,
∵AC⊥BD(正三棱锥性质),
∴AC⊥平面ABD 所以正三棱锥A-BCD是正方体的一个角,
∵BC=2,
∴AB=$\sqrt{2}$,
∴V=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$;
(2)由(1)可知DA⊥平面ABC,∴∠DEA是DE与平面ABC所成角,
∵tan∠DEA=2,∴cos∠DEA=$\frac{\sqrt{5}}{5}$.

点评 本题考查棱锥的体积,考查线面角,考查逻辑思维能力,空间想象能力,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网