题目内容
18.将除颜色完全相同的一个白球、一个黄球、两个红球红球分给三个小朋友,且每个小朋友至少分得一个球的分法有 ( )种.| A. | 15 | B. | 21 | C. | 18 | D. | 24 |
分析 把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),分两类,根据分类计数原理可得.
解答 解:把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),
若(红红,红黄,红白)分给其中一个小朋友,则剩下的两个球分给2个小朋友,共有3×3×A22=18种,
若(白黄两个小球)分给其中一个小朋友,剩下的两个红色小球只有1种分法,故有3×1=3种,
根据分类计数原理可得,共有18+3=21种.
故选:B.
点评 本题考查了分组分配的问题,关键是分组,属于中档题.
练习册系列答案
相关题目
9.设函数fn′(x)是fn(x)的导函数,f0(x)=ex(cosx+sinx),f1(x)=$\frac{f_0^'(x)}{{\sqrt{2}}}$,f2(x)=$\frac{f_1^'(x)}{{\sqrt{2}}}$,…,${f_{n+1}}(x)=\frac{f_n^'(x)}{{\sqrt{2}}}$(n∈N),则f2016(x)=( )
| A. | ex(cosx+sinx) | B. | ex(cosx-sinx) | C. | -ex(cosx+sinx) | D. | ex(sinx-cosx) |
6.已知α是第二象限角,且$sin({\frac{π}{2}+α})=-\frac{{\sqrt{5}}}{5}$,则$\frac{{{{cos}^3}α+sinα}}{{cos({α-\frac{π}{4}})}}$=( )
| A. | $-\frac{{11\sqrt{2}}}{15}$ | B. | $-\frac{{9\sqrt{2}}}{5}$ | C. | $\frac{{9\sqrt{2}}}{5}$ | D. | $\frac{{11\sqrt{2}}}{15}$ |