题目内容
8.等差数列{an}的前n项和为Sn,已知a1=-20,且S10=S15.求:(1)数列{an}的通项公式an;
(2)Sn的最小值及此时n的值.
分析 (1)由等差数列的前n项和公式即可求出d,写出通项公式即可,
(2)由通项公式得到当n=13或,12时此时Sn有最小值,根据前n项和公式计算即可.
解答 解:(1)a1=-20,且S10=S15,设公差为d,
∴10a1+$\frac{10(10-1)d}{2}$=15a1+$\frac{15(15-1)d}{2}$,
解得d=$\frac{5}{3}$,
∴an=a1+(n-1)d=-20+$\frac{5}{3}$(n-1)=$\frac{5n}{3}$-$\frac{65}{3}$,
(2)∵an=$\frac{5n}{3}$-$\frac{65}{3}$≤0,
∴n≤13,
∴当n=13或,12时此时Sn有最小值
∴S13=S12=$\frac{13({a}_{1}+{a}_{13})}{2}$=$\frac{13×(-20)}{2}$=-130.
点评 本题考查了等差数列的通项公式和前n项和公式,考查了等差数列的和取得最值的条件①a1>0,d<0时数列的和有最大值②a1<0,d>0数列的和有最小值
练习册系列答案
相关题目
18.将除颜色完全相同的一个白球、一个黄球、两个红球红球分给三个小朋友,且每个小朋友至少分得一个球的分法有 ( )种.
| A. | 15 | B. | 21 | C. | 18 | D. | 24 |
20.在△ABC中,AB=2,AC=1,∠A=$\frac{2π}{3}$,过A作AD⊥BC于D,且$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λμ=( )
| A. | $\frac{10}{49}$ | B. | $\frac{5\sqrt{7}}{14}$ | C. | $\frac{9}{7}$ | D. | 1 |
17.函数y=2sin(ωx+φ)是偶函数,则φ可能等于( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
18.在等比数列{an}中,已知a4=27a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$等于( )
| A. | $\frac{{3}^{-n}-3}{2}$ | B. | $\frac{{3}^{1-n}-3}{2}$ | C. | $\frac{{3}^{n}-3}{2}$ | D. | $\frac{{3}^{n+1}-3}{2}$ |