题目内容

设a,b,c是满足1<a<b<c≤9的整数,若0.
a
,0.0
b
,0.00
c
成等比数列,则a,b,c的值依次为
 
考点:等比数列的性质
专题:等差数列与等比数列
分析:根据循环小数的分数表示得:0.
a
=
0.a
1-0.1
,0.0
b
=
0.0b
1-0.1
,0.00
c
=
0.00c
1-0.1
,由等比中项的性质可得b2=ac,由a、b、c的取值范围求值即可.
解答: 解:0.
a
=
0.a
1-0.1
,0.0
b
=
0.0b
1-0.1
,0.00
c
=
0.00c
1-0.1

因为0.
a
,0.0
b
,0.00
c
成等比数列,所以(0.0b)2=0.a×0.00c,b2=ac,
因为a,b,c是满足1<a<b<c≤9的整数,
则验证:a,b,c依次为2、4、8时满足条件,
故答案为:2、4、8.
点评:本题考查等比中项的性质,以及循环小数的分数表示,解题的关键是将三个循环小数化为统一的形式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网