题目内容
由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是( )
| A、归纳推理 | B、类比推理 |
| C、演绎推理 | D、以上都不是 |
考点:演绎推理的基本方法
专题:规律型,推理和证明
分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,可得结论.
解答:
解:根据平面与空间之间的类比推理方法,可知由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是类比推理.
故选B.
故选B.
点评:类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关题目
某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9(x<y)已知这组数据的平均数为10,标准差为
,则y-x的值为( )
(参考公式:标准差s=
)
| 2 |
(参考公式:标准差s=
|
| A、4 | B、3 | C、2 | D、1 |
“m=3”是“直线l1:2(m+1)x+(m-3)y+7-5m=0与直线l2:(m-3)x+2y-5=0垂直”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
由389化为的四进制数的末位为( )
| A、3 | B、2 | C、1 | D、0 |
过点(1,-2)的直线与圆x2+y2-6x+2y+1=0交于A、B两点,则|AB|的最小值是( )
| A、5 | ||
B、2
| ||
| C、4 | ||
D、2
|