题目内容
16.在平行四边形ABCD中,E为BC的中点,F在线段DC上,且CF=2DF.若$\overrightarrow{AC}=λ\overrightarrow{AE}+μ\overrightarrow{AF}$,λ,μ均为实数,则λ+μ的值为$\frac{7}{5}$.分析 设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AE}$=$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$,$\overrightarrow{AF}$=$\frac{1}{3}\overrightarrow{a}$+$\overrightarrow{b}$,从而$\overrightarrow{AC}=\overrightarrow{a}+\overrightarrow{b}$=$λ(\overrightarrow{a}+\frac{1}{2}\overrightarrow{b})+μ(\frac{1}{3}\overrightarrow{a}+\overrightarrow{b})$,由此能求出λ+μ.
解答
解:设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,
∵在平行四边形ABCD中,E为BC的中点,F在线段DC上,且CF=2DF,
∴$\overrightarrow{AE}$=$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$,$\overrightarrow{AF}$=$\frac{1}{3}\overrightarrow{a}$+$\overrightarrow{b}$,
∵$\overrightarrow{AC}=λ\overrightarrow{AE}+μ\overrightarrow{AF}$,λ,μ均为实数,$\overrightarrow{AC}=\overrightarrow{a}+\overrightarrow{b}$,
∴$\overrightarrow{AC}=\overrightarrow{a}+\overrightarrow{b}$=$λ(\overrightarrow{a}+\frac{1}{2}\overrightarrow{b})+μ(\frac{1}{3}\overrightarrow{a}+\overrightarrow{b})$,
∴$\left\{\begin{array}{l}{λ+\frac{μ}{3}=1}\\{\frac{λ}{2}+μ=1}\end{array}\right.$,解得$λ=\frac{4}{5},μ=\frac{3}{5}$,
∴λ+μ=$\frac{7}{5}$.
故答案为:$\frac{7}{5}$.
点评 本题考查代数式求值,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.
| A. | 2y<2x | B. | logx4<logy4 | C. | log3x<log3y | D. | ${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$ |
| A. | $\frac{1}{8}$ | B. | -$\frac{1}{8}$ | C. | 8 | D. | -8 |
| A. | 2个 | B. | 1个 | C. | 0个 | D. | 无数个 |