题目内容

12.已知函数f(x)=|x+3|+2,g(x)=kx+1,若方程f(x)=g(x)有两个不相等的实根,则实数a的取值范围是(  )
A.(-$\frac{1}{3}$,+∞)B.($\frac{1}{3}$,1)C.(-∞,-$\frac{1}{3}$)D.(-1,-$\frac{1}{3}$)

分析 画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.

解答 解:由题意可得函数f(x)的图象(蓝线)
和函数g(x)的图象(红线)有两个交点,

如图所示:KBA=-$\frac{1}{3}$,
数形结合可得-1<k<-$\frac{1}{3}$,
故选:D.

点评 本题主要考查根的存在性及根的个数判断、考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网