ÌâÄ¿ÄÚÈÝ
3£®¸ø³öÏÂÁнáÂÛ£º¶¯µãM£¨x£¬y£©·Ö±ðµ½Á½¶¨µã£¨-3£¬0£©¡¢£¨3£¬0£©Á¬ÏßµÄбÂÊÖ®³Ë»ýΪ$\frac{16}{9}$£¬ÉèM£¨x£¬y£©µÄ¹ì¼£ÎªÇúÏßC£¬F1¡¢F2£¬·Ö±ðΪÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£¬ÔòÏÂÁÐ˵·¨ÖУº
£¨1£©ÇúÏßCµÄ½¹µã×ø±êΪF1£¨-5£¬0£©¡¢F2£¨5£¬0£©£»
£¨2£©µ±x£¼0ʱ£¬¡÷F1MF2µÄÄÚÇÐÔ²Ô²ÐÄÔÚÖ±Ïßx=-3ÉÏ£»
£¨3£©Èô¡ÏF1MF2=90¡ã£¬Ôò${S_{¡÷{F_1}M{F_2}}}$=32£»
£¨4£©ÉèA£¨6£¬1£©£¬Ôò|MA|+|MF2|µÄ×îСֵΪ2$\sqrt{2}$£»
ÆäÖÐÕýÈ·µÄÐòºÅÊÇ£º¢Ù¢Ú£®
·ÖÎö £¨1£©£¬ÓÉÇúÏßCµÄ±ê×¼·½³Ì¿ÉµÃc=$\sqrt{16+9}$=5£»
£¨2£©ÉèAΪÄÚÇÐÔ²ÓëxÖáµÄÇе㣬ÓÉÓÚ|F2M|-|F1M|=|F2A|-|F1A|=2a=6£¬|F2A|+|F1A|=2c=10£¬¿ÉµÃ|F2A|=8£¬|F1A|=2£¬½âµÃxA£¬¼´¿ÉÅжϳö£»
£¨3£©£¬Éè|F1M|=m£¬|F1M|=n£¬m£¾n£¬ÓÉm2+n2=102£¬m-n=6£¬µÃmn¼´¿É£»
£¨4£©²»·ÁÉèµãMÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬¸ù¾Ý¶¨Òå¿ÉµÃ|MF1|-|MF2|=2a=6£¬¿ÉµÃ|MA|+|MF2|=|MA|+|MF1|-6£¬µ±A¡¢M¡¢F1Èýµã¹²Ïßʱ£¬|MA|+|MF2|µÄ×îСֵΪ|AF1|-6£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ$\frac{y}{x-3}•\frac{y}{x+3}=\frac{16}{9}$£¬»¯Îª$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$£¨x¡Ù¡À3£©£®
¶ÔÓÚ£¨1£©£¬ÓÉÇúÏßCµÄ±ê×¼·½³Ì¿ÉµÃc=$\sqrt{16+9}$=5£¬¡àÇúÏßCµÄ½¹µã×ø±êΪF1£¨-5£¬0£©¡¢F2£¨5£¬0£©£¬ÕýÈ·£»
¶ÔÓÚ£¨2£©ÉèAΪÄÚÇÐÔ²ÓëxÖáµÄÇе㣬¡ß|F2M|-|F1M|=|F2A|-|F1A|=2a=6£¬|F2A|+|F1A|=2c=10£¬¡à|F2A|=8£¬|F1A|=2£¬¡à5-xA=8£¬½âµÃxA=-3£®ÉèÔ²ÐÄP£¬ÔòPO¡ÍxÖᣬ´Ó¶ø¿ÉµÃÔ²ÐÄÔÚÖ±Ïßx=-3ÉÏ£¬Òò´ËÕýÈ·£»
¶ÔÓÚ£¨3£©£¬Éè|F1M|=m£¬|F1M|=n£¬m£¾n£¬¡ß¡ÏF1MF2=90¡ã£¬¡àm2+n2=102£¬m-n=6£¬
¡àS${\;}_{¡÷{F}_{1}M{F}_{2}}$=$\frac{1}{2}$mn=16£¬¹Ê´í£»
¶ÔÓÚ£¨4£©£¬²»·ÁÉèµãMÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬¡ß|MF1|-|MF2|=2a=6£¬¡à|MA|+|MF2|=|MA|+|MF1|-6£¬µ±A¡¢M¡¢F1Èýµã¹²Ïßʱ£¬|MA|+|MF2|µÄ×îСֵΪ|AF1|-6=$\sqrt{122}$-6£®Òò´Ë²»ÕýÈ·£®
×ÛÉϿɵãºÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨1£©£¨2£©£®
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£®
µãÆÀ ±¾Ì⿼²éÁËË«ÇúÏߵ͍Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Èý½ÇÐεÄÄÚÇÐÔ²µÄÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ£¬¿¼²éÁËת»¯ÄÜÁ¦£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | £¨1£¬1£¬1£© | B£® | £¨1£¬2£¬2£© | C£® | £¨1£¬2£¬4£© | D£® | £¨1£¬1£¬2£© |
| A£® | $\frac{¦Ð}{2}$ | B£® | ¦Ð | C£® | 2¦Ð | D£® | 4¦Ð |
| A£® | £¨-$\frac{1}{3}$£¬+¡Þ£© | B£® | £¨$\frac{1}{3}$£¬1£© | C£® | £¨-¡Þ£¬-$\frac{1}{3}$£© | D£® | £¨-1£¬-$\frac{1}{3}$£© |