题目内容

3.在梯形ABCD中,AD∥BC∠BAD=135°,以A为圆心,AB为半径,作⊙A交AD、BC于E、F两点,并交BA延长线于G点,则$\widehat{BF}$的度数是90°.

分析 连接AF,由平行线的性质得出∠B=45°,由等腰三角形的性质得出∠AFB=∠B=45°,由三角形内角和定理得出∠BAF=90°,即可得出$\widehat{BF}$的度数.

解答 解:连接AF,如图所示:
∵AD∥BC,∠BAD=135°,
∴∠B+∠BAD=180°,
∴∠B=45°,
∵AF=AB,
∴∠AFB=∠B=45°,
∴∠BAF=180°-45°-45°=90°,
∴$\widehat{BF}$的度数为90°.
故答案为90°.

点评 本题考查了梯形的性质、等腰三角形的性质、圆心角、弧、弦的关系;熟练掌握梯形的性质,由等腰三角形的性质求出圆心角的度数是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网