题目内容

16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=200m,则山高MN=300m.

分析 在△ABC中,求出AC,在△AMC中,利用正弦定理求出AM,然后在Rt△AMN中,求解MN.

解答 解:在△ABC中,∵∠BAC=45°,∠ABC=90°,BC=200,
∴AC=$\frac{200}{sin45°}$=200$\sqrt{2}$,
在△AMC中,∵∠MAC=75°,∠MCA=60°,∴∠AMC=45°,
由正弦定理可得AM=$\frac{ACsin60°}{sin45°}$=200$\sqrt{3}$,
在Rt△AMN中,MN=AM•sin∠MAN=200$\sqrt{3}×sin60°$=300(m).
故答案为300m.

点评 本题考查正弦定理在三角形的解法中的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网