题目内容
1.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,则F(x)在(-∞,0)上( )| A. | 有最小值-5 | B. | 有最大值-5 | C. | 有最小值-1 | D. | 有最大值-1 |
分析 令h(x)=af(x)+bg(x),由题意可得奇函数h(x)在(0,+∞)上有最大值3,故h(x)在(-∞,0)上有最小值-3,由此可得结论.
解答 解:令h(x)=af(x)+bg(x),∵函数f(x)、g(x)都是奇函数,
则h(x)也是奇函数,且F(x)=h(x)+2.
∵F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,
∴h(x)在(0,+∞)上有最大值3,∴h(x)在(-∞,0)上有最小值-3,
∴F(x)=h(x)+2在(-∞,0)上有最小值-1,
故选:C.
点评 本题主要考查函数单调性的判断,根据函数的奇偶性构造函数h(x)是解决本题的关键,属于中档题.
练习册系列答案
相关题目
11.函数f(x)=loga(2x-3)-4(a>0且a≠1)的图象恒过定点( )
| A. | (1,0) | B. | (1,-4) | C. | (2,0) | D. | (2,-4) |
12.工人工资y(元)与劳动生产率x(千元)的相关关系的回归直线方程为$\widehat{y}$=50+80x,下列判断正确的是( )
| A. | 劳动生产率为1 000元时,工人工资为130元 | |
| B. | 劳动生产率提高1 000元时,工人工资平均提高80元 | |
| C. | 劳动生产率提高1 000元时,工人工资平均提高130元 | |
| D. | 当月工资为250元时,劳动生产率为2 000元 |
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点 A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是( )
| A. | ($\frac{1}{4}$,1) | B. | (2,+∞) | C. | $({-∞,-2})∪({\frac{1}{4},+∞})$ | D. | $({-∞,\frac{1}{4}})$ |
3.已知直线l:x-$\sqrt{3}$y+3=0与椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=( )
| A. | $\sqrt{3}$ | B. | $\frac{16}{13}$ | C. | $\frac{32}{13}$ | D. | $\frac{30}{13}$ |
4.设正实数x,y满足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),若不等式(x+y)2≤2ax2+(a+1)y2有解,则实数a的取值范围是( )
| A. | a≥1 | B. | a≥$\frac{8}{9}$ | C. | a≥$\frac{7}{8}$ | D. | a≥$\frac{5}{6}$ |