题目内容
9.已知函数f(x)=alnx-x(a>0).(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若不等式f(x)≤-1对任意x∈(0,+∞)恒成立,求实数a的值.
分析 (1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(2)问题转化为alnx-x+1≤0对任意x∈(0,+∞)恒成立,令g(x)=alnx-x+1,(x>0,a>0),求出g(x)的最大值,得到关于a的方程,解出即可.
解答 解:(1)a=2时,f(x)=2lnx-x,(x>0),
f′(x)=$\frac{2}{x}$-1=$\frac{2-x}{x}$,
故f(1)=-1,f′(1)=1,
故切线方程是:y+1=x-1,
即x-y-2=0;
(2)若不等式f(x)≤-1对任意x∈(0,+∞)恒成立,
则alnx-x+1≤0对任意x∈(0,+∞)恒成立,
令g(x)=alnx-x+1,(x>0,a>0),
g′(x)=$\frac{a}{x}$-1=$\frac{a-x}{x}$,
令g′(x)>0,解得:0<x<a,
令g′(x)<0,解得:x>a,
故g(x)在(0,a)递增,在(a,+∞)递减,
故g(x)max=g(a)=alna-a+1,
故alna-a+1=0,解得:a=1.
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
练习册系列答案
相关题目
17.已知$θ∈(\frac{π}{2},π)$,则$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=( )
| A. | sinθ-cosθ | B. | cosθ-sinθ | C. | ±(sinθ-cosθ) | D. | sinθ+cosθ |
14.复数z=1+$\frac{2-i}{2+4i}$(i是虚数单位)在复平面内所对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
1.已知函数f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三个不同的零点,则实数a的取值范围是( )
| A. | [-2,2) | B. | [-1,2) | C. | (-2,-1] | D. | (-1,2] |