题目内容

三角形ABC的三内角A、B、C所对的边长分别是a,b,c若(a+b)(sinB-sinA)=(
3
a+c)sinC,则角B的大小为(  )
A、
π
6
B、
π
3
C、
6
D、
3
考点:正弦定理,余弦定理
专题:计算题,解三角形
分析:运用正弦定理,可得(a+b)(b-a)=c(
3
a+c),即有c2+a2-b2=-
3
ac,再由余弦定理,即可得到B.
解答: 解:由正弦定理,可得,sinA=
a
2R
,sinB=
b
2R
,sinC=
c
sinC

由(a+b)(sinB-sinA)=(
3
a+c)sinC,可得,
(a+b)(b-a)=c(
3
a+c),即有c2+a2-b2=-
3
ac,
则cosB=
a2+c2-b2
2ac
=-
3
2

由于0<B<π,则B=
6

故选C.
点评:苯乙酮考查正弦定理和余弦定理及运用,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网