题目内容

20.给出下列四个结论:
①${∫}_{-a}^{a}$(x2+sinx)dx=18,则a=3;
②用相关指数R2来刻画回归效果,R2的值越大,说明模型的拟合效果越差;
③若f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),则函数f(x)的图象关于x=1对称;
④已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ<-2)=0.21;
其中正确结论的序号为①③④.

分析 求出被积函数,由定积分公式,计算可得a,即可判断①;
由用相关指数R2来刻画回归效果,R2的值越大,说明模型的拟合效果越好,即可判断②;
应用奇函数的定义和对称性,即可判断③;
由正态分布的特点,曲线关于x=1对称,即可判断④.

解答 解:对于①,${∫}_{-a}^{a}$(x2+sinx)dx=($\frac{1}{3}$x3-cosx)|${\;}_{-a}^{a}$=$\frac{2}{3}$a3-0=18,则a=3,故正确;
对于②,用相关指数R2来刻画回归效果,R2的值越大,说明模型的拟合效果越好,故错误;
对于③,若f(x)是定义在R上的奇函数,可得f(-x)=-f(x),又f(x+2)=-f(x),即有f(2+x)=f(-x),
则函数f(x)的图象关于x=1对称,故正确;
对于④,已知随机变量ξ服从正态分布N(1,σ2),曲线关于x=1对称,P(ξ≤4)=0.79,
则P(ξ<-2)=P(ξ>4)=1-P(ξ≤4)=1-0.79=0.21,故正确.
故答案为:①③④.

点评 本题考查命题的真假判断和应用,考查定积分的计算和线性回归的特点,以及函数的对称性和正态分布的特点,考查判断能力和运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网