题目内容
10.函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(5)=( )| A. | -1 | B. | 0 | C. | 1 | D. | 5 |
分析 可知f(x+1)是R上的奇函数,从而得出f(1)=0,进而得出f(-3)=0,从而可得出f(5)=-f(-3)=0.
解答 解:根据条件,f(x+1)与f(x-1)都是R上的奇函数;
∴f(0+1)=0;
即f(1)=0;
x=-2时,f(-2-1)=-f(2-1);
即f(-3)=-f(1)=0;
∴f(5)=f(4+1)=-f(-4+1)=-f(-3)=0.
故选B.
点评 考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0.
练习册系列答案
相关题目
6.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
18.已知在△ABC中,角A,B,C所对的边分别为a,b,c,若C=2A,c=$\sqrt{3}$a,则$\frac{b}{a}$等于( )
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 1或2 |
5.为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房的心理预期调研,用简单随机抽样的方法抽取110人进行统计,得到如下列联表:
已知样本中城市人数与农村人数之比是3:8.
(1)分别求样本中城市人中的不买房人数和农村人中的纠结人数;
(2)用独立性检验的思想方法说明在这三种买房的心理预期中哪一种与城乡有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$.
| 买房 | 不买房 | 纠结 | |
| 城市人 | 5 | 15 | |
| 农村人 | 20 | 10 |
(1)分别求样本中城市人中的不买房人数和农村人中的纠结人数;
(2)用独立性检验的思想方法说明在这三种买房的心理预期中哪一种与城乡有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$.
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
2.复数z满足$({1-\sqrt{3}i})z=i$(S为虚数单位),则|z|=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |