题目内容

已知正三棱锥S-ABC的所有棱长均为2,则侧面与底面所成二面角的余弦为(  )
A、
2
2
3
B、-
2
2
3
C、
1
3
D、-
1
3
考点:二面角的平面角及求法
专题:计算题,空间角
分析:利用正三棱锥的性质和二面角的定义、等边三角形的性质即可求出.
解答: 解:如图所示,过点S作SO⊥底面ABC,点O为垂足,
连接OA、OB、OC,则Rt△OAB≌Rt△OBC≌Rt△OCA,∴OA=OB=OC,
∴点O为等边△ABC的中心.
延长AO交BC于点D,连接SD.
则AD⊥BC,再根据三垂线定理可得BC⊥SD.
∴∠ODS为侧面SBC与底面ABC所成的二面角的平面角.
根据重心定理可得:OD=
1
3
AD=
3
3

在Rt△SOD中,cos∠ODS=
SO
OD
=
1
3

故选C.
点评:熟练掌握正三棱锥的性质和二面角的定义、等边三角形的性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网