题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线为y=-
5
2
x,则它的离心率为(  )
A、
3
2
B、
2
3
C、
3
5
5
D、
5
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程,可得b=
5
2
a,再由离心率公式及a,b,c的关系,计算即可得到所求值.
解答: 解:双曲线
x2
a2
-
y2
b2
=1的渐近线方程为y=±
b
a
x,
由一条渐近线为y=-
5
2
x,可得
b
a
=
5
2

即b=
5
2
a,
即有e=
c
a
=
a2+b2
a
=
a2+
5
4
a2
a
=
3
2

故选A.
点评:本题考查双曲线的方程和性质,考查渐近线方程的运用,考查离心率的求法,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网