题目内容
11.在△ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=$\sqrt{3}$,B=60°,则△ABC的面积为( )| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
分析 由已知利用正弦定理可得sinA=$\frac{asinB}{b}$=$\frac{1}{2}$,结合大边对大角可求A,进而利用三角形内角和定理可求C,利用三角形面积公式即可计算得解.
解答 解:∵a=1,b=$\sqrt{3}$,B=60°,
∴由正弦定理可得:sinA=$\frac{asinB}{b}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵a<b,A<60°,
∴A=30°,C=180°-A-B=90°,
∴S△ABC=$\frac{1}{2}$ab=$\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
故选:B.
点评 本题主要考查了正弦定理,大边对大角,三角形内角和定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
1.已知f(x)是定义在R上的奇函数,且周期为2,当x∈(0,1]时,f(x)=1-x,则函数f(x)在[0,2017]上的零点个数是( )
| A. | 1008 | B. | 1009 | C. | 2017 | D. | 2018 |
2.已知等差数列{an}中,Sn为其前n项和,S4=π(其中π为圆周率),a4=2a2,现从此数列的前30项中随机选取一个元素,则该元素的余弦值为负数的概率为( )
| A. | $\frac{7}{15}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{15}$ | D. | $\frac{7}{30}$ |
19.已知数列{an}满足an+1=an-an-1(n≥2),a1=m,a2=n,Sn为数列{an}的前n项和,则S2017的值为( )
| A. | 2017n-m | B. | n-2017m | C. | m | D. | n |
3.已知抛物线y2=20x的焦点F恰好为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
20.若α∈($\frac{π}{2}$,π),则3cos2α=cos($\frac{π}{4}$+α),则sin2α的值为( )
| A. | $\frac{1}{18}$ | B. | -$\frac{1}{18}$ | C. | $\frac{17}{18}$ | D. | -$\frac{17}{18}$ |
15.f(x)是定义在(0,+∞)上的单调函数,且对?x∈(0,+∞)都有f(f(x)-lnx)=e+1,则方程f(x)-f′(x)=e的实数解所在的区间是( )
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,4) |