题目内容
8.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,则该三棱锥外接球的表面积为( )| A. | 4$\sqrt{3}$π | B. | $\frac{27\sqrt{3}π}{2}$ | C. | 27π | D. | 9π |
分析 把该三棱锥补成正方体,则正方体的对角线是外接球的直径,
求出半径,计算它的表面积.
解答
解:将该三棱锥补成正方体,如图所示;
根据题意,2R=$\sqrt{{3}^{2}×3}$,
解得R=$\frac{3\sqrt{3}}{2}$;
∴该三棱锥外接球的表面积为
S球=4πR2=4π•${(\frac{3\sqrt{3}}{2})}^{2}$=27π.
故选:C.
点评 本题考查了几何体的外接球表面积的应用问题,是基础题.
练习册系列答案
相关题目
18.某高中有甲乙两个班级进行数学考试,按照大于或等于90分为优秀,90分以下为非优秀统计成绩后,得到如下的列联表:
(1)请完成上面的列联表;
(2)根据列联表的数据,能否在犯错误的概率不超过0.05的前提下认为成绩与班级有关系?
参考公式:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}(其中n=a+b+c+d$为样本容量)
随机变量K2的概率分布:
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | 45 | 55 |
| 乙班 | 20 | 30 | 55 |
| 合计 | 30 | 75 | 105 |
(2)根据列联表的数据,能否在犯错误的概率不超过0.05的前提下认为成绩与班级有关系?
参考公式:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}(其中n=a+b+c+d$为样本容量)
随机变量K2的概率分布:
| p(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
3.如图所示是某几何体的三视图,则该几何体的体积是( )

| A. | 3$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 6$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
20.如果函数f(x)=3sin(2x+ϕ)的图象关于直线$x=\frac{2}{3}π$对称,那么|φ|的最小值为( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |