题目内容
3.如图所示是某几何体的三视图,则该几何体的体积是( )| A. | 3$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 6$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
分析 由已知中的三视图可得:该几何体是一个以俯视图中大三角形为底面的三棱柱,切去三个以俯视图中小三角形为底面的三棱锥得到的组合体,进而得到答案.
解答 解:由已知中的三视图可得:
该几何体是一个以俯视图中大三角形为底面的三棱柱,
切去三个以俯视图中小三角形为底面的三棱锥得到的组合体,
故组合体的体积:V=$\frac{1}{2}$×4×2$\sqrt{3}$×3-3×$\frac{1}{3}$×$\frac{1}{2}$×2×$\sqrt{3}$×3=9$\sqrt{3}$,
故选:D.
点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.
练习册系列答案
相关题目
11.直线4x-3y=0与圆(x-1)2+(y-3)2=10相交所得弦长为( )
| A. | 6 | B. | 3 | C. | $6\sqrt{2}$ | D. | $3\sqrt{2}$ |
18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
男性用户
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不要求计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取2名用户,求2名用户评分都小于90分的概率.
女性用户:
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 45 | 75 | 90 | 60 | 30 |
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取2名用户,求2名用户评分都小于90分的概率.
8.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,则该三棱锥外接球的表面积为( )
| A. | 4$\sqrt{3}$π | B. | $\frac{27\sqrt{3}π}{2}$ | C. | 27π | D. | 9π |
15.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,($\overrightarrow{a}$-2$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
12.某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图(图1):
(Ⅰ)求a,b的值;
(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;
(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.
| 组号 | 分组 | 频数 |
| 1 | [0.5,1) | 20 |
| 2 | [1,1.5) | 40 |
| 3 | [1.5,2) | 80 |
| 4 | [2,2.5) | 120 |
| 5 | [2.5,3) | 60 |
| 6 | [3,3.5) | 40 |
| 7 | [3.5,4) | 20 |
| 8 | [4,4.5) | 20 |
(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;
(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.
7.若等比数列{an}的前项和为Sn,且S2=3,S6=63,则S5=( )
| A. | -33 | B. | 15 | C. | 31 | D. | -33或31 |