题目内容
17.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是( )| A. | 乙,丁 | B. | 甲,丙 | C. | 甲,丁 | D. | 乙,丙 |
分析 根据题意,假设乙的说法是正确的,分析可得丁也是正确的,那么甲丙的说法都是错误的,分析可得乙的说法相矛盾,即可得假设乙的说法是正确是错误的,从而可得丁的说法也是错误的,从而可得说法正确的是甲、丙,即可得答案.
解答 解:根据题意,由于甲乙丙丁四人中有且只有两人的说法是正确的,
假设乙的说法是正确的,则丁也是正确的,那么甲丙的说法都是错误的,
如果丙同学说:“1班、4班中有且只有一个班获奖”是错误的,那么1班、4班都获奖或1班、4班都没有获奖,与乙的说法矛盾,
故乙的说法是错误,则丁同学说:“乙说得对”也是错误的;
故说法正确的是甲、丙,
故选:B.
点评 本题考查合情推理的运用,此类题目常用的手段是假设法,抓住题干中的条件进行推理,推理所得的结果如果不互相矛盾,则假设成立,反之,不成立.
练习册系列答案
相关题目
8.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,则该三棱锥外接球的表面积为( )
| A. | 4$\sqrt{3}$π | B. | $\frac{27\sqrt{3}π}{2}$ | C. | 27π | D. | 9π |
12.某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图(图1):
(Ⅰ)求a,b的值;
(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;
(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.
| 组号 | 分组 | 频数 |
| 1 | [0.5,1) | 20 |
| 2 | [1,1.5) | 40 |
| 3 | [1.5,2) | 80 |
| 4 | [2,2.5) | 120 |
| 5 | [2.5,3) | 60 |
| 6 | [3,3.5) | 40 |
| 7 | [3.5,4) | 20 |
| 8 | [4,4.5) | 20 |
(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;
(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.
3.已知Sn是等差数列{an}的前n项和,若a1=-2017,$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}$=6,则S2017=-2017.
20.函数$y=\frac{{{x^2}+7x+10}}{x+1}({x>-1})$的最小值为( )
| A. | 2 | B. | 7 | C. | 9 | D. | 10 |
1.已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2016=( )
| A. | 6 | B. | -6 | C. | 3 | D. | -3 |