题目内容
函数y=2sin(x+10°)+sin(x-50°)的值域为 .
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:两角和与差的正弦函数化简可得y=
sin(x+10°-θ),其中tanθ=
,易得值域.
| 7 |
| ||
| 5 |
解答:
解:化简可得y=2sin(x+10°)+sin(x-50°)
=2sin(x+10°)+sin(x+10°-60°)
=2sin(x+10°)+
sin(x+10°)-
cos(x+10°)
=
sin(x+10°)-
cos(x+10°)
=
sin(x+10°-θ),其中tanθ=
,
∴原函数的值域为:[-
,
]
故答案为:[-
,
]
=2sin(x+10°)+sin(x+10°-60°)
=2sin(x+10°)+
| 1 |
| 2 |
| ||
| 2 |
=
| 5 |
| 2 |
| ||
| 2 |
=
| 7 |
| ||
| 5 |
∴原函数的值域为:[-
| 7 |
| 7 |
故答案为:[-
| 7 |
| 7 |
点评:本题考查两角和与差的正弦函数,涉及三角函数的值域,属基础题.
练习册系列答案
相关题目
对于函数f(x)(x∈N+),若存在常数M,使得对任意给定的x∈N+,f(x)与f(x+1)中至少有一个不小于M,则记作{f(x)}△M,那么下列命题正确的是( )
| A、若{f(x)}△M,则函数f(x)(x∈N+)的值均≥M |
| B、若{f(x)}△M,{g(x)}△M,则{f(x)+g(x)}△2M |
| C、若{f(x)}△M,则{(f(x))2}△M2 |
| D、若{f(x)}△M,则{3f(x)+2}△3M+2 |