题目内容

7.定义上凸函数如下:设f(x)为区间I上的函数,若对任意的x1,x2∈I总有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$,则称f(x)为I上的上凸函数,某同学查阅资料后发现了上凸函数有如下判定定理和性质定理:
判定定理:f(x)为上凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.
性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≥f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
请问:在△ABC中,sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$.

分析 构造函数f(x)=sinx,x∈(0,π),求导,则f″(x)≤-sinx,由正弦函数的图象可知f″(x)<0成立,则f(x)=sinx,x∈(0,π)是凸函数,根据凸函数的性质sinA+sinB+sinC≤3sin($\frac{A+B+C}{3}$),即可求得sinA+sinB+sinC的最大值.

解答 解:设f(x)=sinx,x∈(0,π),则f′(x)=cosx,则f″(x)≤-sinx,x∈(0,π),
由当x∈(0,π),0<sin≤1,则f″(x)<0成立,则f(x)=sinx,x∈(0,π)是凸函数,
由凸函数的性质可知:$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≤f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
则sinA+sinB+sinC≤3sin($\frac{A+B+C}{3}$)=3×sin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,
∴sinA+sinB+sinC的最大值为$\frac{3\sqrt{3}}{2}$,
故答案为:$\frac{3\sqrt{3}}{2}$.

点评 本题考查凸函数的性质,考查正弦函数的性质,考查转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网