题目内容
16.已知复数i•(1+ai)为纯虚数,那么实数a的值为( )| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 直接利用复数代数形式的乘除运算化简,然后由实部为0求得a的值.
解答 解:∵i•(1+ai)=-a+i为纯虚数,
∴-a=0,即a=0.
故选:B.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
7.若函数f(x)满足:?x∈R,f(2x)=sinx+f(x),且f(1)=1,则( )
| A. | f($\frac{1}{{2}^{2016}}$)<$\frac{1}{{2}^{2016}}$ | B. | f($\frac{1}{{2}^{2015}}$)<$\frac{1}{{2}^{2016}}$ | ||
| C. | f($\frac{1}{{2}^{2014}}$)<$\frac{1}{4}$+$\frac{3}{{2}^{2016}}$ | D. | f($\frac{1}{{2}^{2013}}$)>$\frac{1}{4}$+$\frac{3}{{2}^{2015}}$ |
4.
已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π),若对满足|f(x1)-f(x2)|=2的x1,x2有|x1-x2|min=π,且函数f(x)的部分图象如图,则函数f(x)的解析式为( )
| A. | f(x)=sin(x+$\frac{5π}{6}$) | B. | f(x)=sin(x-$\frac{π}{6}$) | C. | f(x)=sin(2x+$\frac{2π}{3}$) | D. | f(x)=sin(2x-$\frac{π}{3}$) |
11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},则A∩B=( )
| A. | (1,2) | B. | (-1,2) | C. | (1,3) | D. | (-1,3) |
8.已知两个不相等的非零向量$\overrightarrow{a},\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}},\overrightarrow{{x}_{2}},\overrightarrow{{x}_{3}},\overrightarrow{{x}_{4}},\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}},\overrightarrow{{y}_{2}},\overrightarrow{{y}_{3}},\overrightarrow{{y}_{4}},\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排成一列而成.记$\overrightarrow{{x}_{1}}•\overrightarrow{{y}_{1}}+\overrightarrow{{x}_{2}}•\overrightarrow{{y}_{2}}+\overrightarrow{{x}_{3}}•\overrightarrow{{y}_{3}}+\overrightarrow{{x}_{4}}•\overrightarrow{{y}_{4}}+\overrightarrow{{x}_{5}•\overrightarrow{{y}_{5}}}$,Smin表示S所有可能取值中的最小值,则下列正确的是( )
| A. | ${S_{min}}={a^2}+2ab+2{b^2}$ | B. | ${S_{min}}=2{a^2}+3{b^2}$ | ||
| C. | 若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关 | D. | S有5个不同的值 |
5.
执行如图所示的程序框图,如果输入n的值为4,则输出的S的值为( )
| A. | 15 | B. | 6 | C. | -10 | D. | -21 |