题目内容
13.点A(2,0)到直线l:y=x+2的距离为( )| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
分析 化直线方程为一般式,然后直接利用点到直线的距离公式求解.
解答 解:由l:y=x+2,得x-y+2=0,所以点(2,0)到直线x-y+2=0的距离为d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$.
故选:D.
点评 本题考查了点到直线的距离公式,是基础的运算题.
练习册系列答案
相关题目
14.已知实数x,y满足$\left\{\begin{array}{l}x+y-4≤0\\ x-y≤0\\ x≥1\end{array}\right.$,则z=2x+3y的最大值为( )
| A. | 5 | B. | 8 | C. | 10 | D. | 11 |
1.命题p:?x0≥2,x02-2x0-2>0的否定是( )
| A. | ?x0≥2,x02-2x0-2<0 | B. | ?x0<2,x02-2x0-2<0 | ||
| C. | ?x<2,x2-2x-2≤0 | D. | ?x≥2,x2-2x-2≤0 |
8.某校高三共有2000名学生参加广安市联考,现随机抽取100名学生的成绩单(单位:分),并列成如表所示的频数分布表:
(1)试估计该年级成绩≥80分的学生人数;
(2)已知样本在成绩在[40,50)中的6名学生中,有4名男生,2名女生,现从中选2人进行调研,求恰好选中一名男生一名女生的概率.
| 组别 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 6 | 18 | 28 | 26 | 17 | 5 |
(2)已知样本在成绩在[40,50)中的6名学生中,有4名男生,2名女生,现从中选2人进行调研,求恰好选中一名男生一名女生的概率.
18.若集合A={x|x<3},B={x|x>0},则A∪B=( )
| A. | {x|0<x<3} | B. | {x|x>0} | C. | {x|x<3} | D. | R |
2.2016年是红色长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动
然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(Ⅰ)求此活动轴个各公园幸运之星的人数
(Ⅱ)若乙公园中每位幸运之星对每个问题答对的概率均为$\frac{\sqrt{2}}{2}$,求恰好2位幸运之星获得纪念品的概率
(Ⅲ)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X,求X的分布列及数学期望E(X)
| 公园 | 甲 | 乙 | 丙 | 丁 |
| 获得签名人数 | 45 | 60 | 30 | 15 |
(Ⅰ)求此活动轴个各公园幸运之星的人数
(Ⅱ)若乙公园中每位幸运之星对每个问题答对的概率均为$\frac{\sqrt{2}}{2}$,求恰好2位幸运之星获得纪念品的概率
(Ⅲ)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X,求X的分布列及数学期望E(X)
3.如图,在网格中粗线显示的为某几何体的三视图(正方形网格的边长为1),则该几何体的体积为( )

| A. | 5 | B. | 6 | C. | 6.5 | D. | 7 |