ÌâÄ¿ÄÚÈÝ
2£®2016ÄêÊǺìÉ«³¤Õ÷ʤÀû80ÖÜÄ꣬ijÊеçÊǪ́¾Ù°ì¼ÍÄîºì¾ü³¤Õ÷ʤÀû80ÖÜÄê֪ʶÎÊ´ð£¬Ðû´«³¤Õ÷¾«Éñ£¬Ê×ÏÈÔڼס¢ÒÒ¡¢±û¡¢¶¡Ëĸö²»Í¬µÄ¹«Ô°½øÐÐÖ§³ÖÇ©Ãû»î¶¯| ¹«Ô° | ¼× | ÒÒ | ±û | ¶¡ |
| »ñµÃÇ©ÃûÈËÊý | 45 | 60 | 30 | 15 |
£¨¢ñ£©Çó´Ë»î¶¯Öá¸ö¸÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý
£¨¢ò£©ÈôÒÒ¹«Ô°ÖÐÿλÐÒÔËÖ®ÐǶÔÿ¸öÎÊÌâ´ð¶ÔµÄ¸ÅÂʾùΪ$\frac{\sqrt{2}}{2}$£¬ÇóÇ¡ºÃ2λÐÒÔËÖ®ÐÇ»ñµÃ¼ÍÄîÆ·µÄ¸ÅÂÊ
£¨¢ó£©ÈôÐÒÔËÖ®ÐÇСÀî¶ÔÆäÖÐ8¸öÎÊÌâÄÜ´ð¶Ô£¬¶øÁíÍâ2¸öÎÊÌâ´ð²»¶Ô£¬¼ÇСÀî´ð¶ÔµÄÎÊÌâÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©
·ÖÎö £¨¢ñ£©´Ë»î¶¯Öá¸ö¸÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý·Ö±ðΪ£º$\frac{45}{150}¡Á10$£¬$\frac{60}{150}¡Á10$£¬$\frac{30}{150}$¡Á10£¬$\frac{15}{150}$¡Á10£®
£¨¢ò£©ÒÒ¹«Ô°ÖÐÿλÐÒÔËÖ®ÐÇ»ñµÃ¼ÍÄîÆ·µÄ¸ÅÂÊΪ${∁}_{4}^{4}£¨\frac{\sqrt{2}}{2}£©^{4}$=$\frac{1}{4}$£¬¿ÉµÃÒÒ¹«Ô°ÖÐÇ¡ºÃ2λÐÒÔËÖ®ÐÇ»ñµÃ¼ÍÄîÆ·µÄ¸ÅÂÊ=${∁}_{4}^{2}¡Á£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©^{2}$£®
£¨¢ó£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄȡֵΪ2£¬3£¬4£®X·þ´Ó¼¸ºÎ·Ö²¼ÁУ®¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©´Ë»î¶¯Öá¸ö¸÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý·Ö±ðΪ£º$\frac{45}{150}¡Á10$=3£¬$\frac{60}{150}¡Á10$=4£¬$\frac{30}{150}$¡Á10=2£¬$\frac{15}{150}$¡Á10=1£®
£¨¢ò£©ÒÒ¹«Ô°ÖÐÿλÐÒÔËÖ®ÐÇ»ñµÃ¼ÍÄîÆ·µÄ¸ÅÂÊΪ${∁}_{4}^{4}£¨\frac{\sqrt{2}}{2}£©^{4}$=$\frac{1}{4}$£¬
¡àÒÒ¹«Ô°ÖÐÇ¡ºÃ2λÐÒÔËÖ®ÐÇ»ñµÃ¼ÍÄîÆ·µÄ¸ÅÂÊ=${∁}_{4}^{2}¡Á£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©^{2}$=$\frac{27}{128}$£®
£¨¢ó£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄȡֵΪ2£¬3£¬4£®X·þ´Ó¼¸ºÎ·Ö²¼ÁУ®P£¨X=2£©=$\frac{{∁}_{8}^{2}{∁}_{2}^{2}}{{∁}_{10}^{4}}$=$\frac{2}{15}$£¬
P£¨X=3£©=$\frac{{∁}_{8}^{3}{∁}_{2}^{1}}{{∁}_{10}^{4}}$=$\frac{8}{15}$£¬P£¨X=4£©=$\frac{{∁}_{8}^{4}}{{∁}_{10}^{4}}$=$\frac{1}{3}$£®
XµÄ·Ö²¼ÁÐΪ£º
| X | 2 | 3 | 4 |
| P | $\frac{2}{15}$ | $\frac{8}{15}$ | $\frac{1}{3}$ |
µãÆÀ ±¾Ì⿼²éÁ˼¸ºÎ·Ö²¼ÁеĸÅÂʼÆË㹫ʽ¼°ÆäÊýѧÆÚÍû¼ÆË㹫ʽ¡¢·Ö²ã³éÑù£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |
| A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\sqrt{2}$ | C£® | 2 | D£® | 2$\sqrt{2}$ |
| A£® | 0 | B£® | -1 | C£® | -2 | D£® | -4 |
| A£® | $\sqrt{13}$ | B£® | $\sqrt{5}$ | C£® | $\sqrt{10}$ | D£® | 2+$\sqrt{3}$ |
| A£® | R | B£® | £¨$\frac{1}{3}$£¬1£© | C£® | £¨0£¬$\frac{1}{3}$£© | D£® | £¨-¡Þ£¬0]¡È[$\frac{1}{3}$£¬+¡Þ£© |