题目内容
各项均不为零的数列{an}的前n项和为Sn,且an+3SnSn-1=0(n≥2),a1=
.
(1)求数列{an}的通项公式an;
(2)若bn=
,设Tn=
+
+…+
,若Tn>m对n≥2恒成立,求实数m的取值范围.
| 1 |
| 3 |
(1)求数列{an}的通项公式an;
(2)若bn=
|
| 1 |
| b1+n |
| 1 |
| b2+n |
| 1 |
| bn+n |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出{
}是以3为首项,以3为公差的等差数列,从而得到
=3n,进而得到Sn=
.由此能求出数列{an}的通项公式an.
(2)由b1=1,bn=
=n,n≥2,得Tn=
+
+…+
,由此推导出{Tn}是单调递增函数,从而求出(Tn)min=T2=
+
=
,由此能求出结果.
| 1 |
| Sn |
| 1 |
| Sn |
| 1 |
| 3n |
(2)由b1=1,bn=
| 1 |
| 3(1-n)an |
| 1 |
| 1+n |
| 1 |
| 2+n |
| 1 |
| n+n |
| 1 |
| 1+2 |
| 1 |
| 2+2 |
| 7 |
| 12 |
解答:
解:(1)当n≥2时,由an+3SnSn-1=0,
得Sn-Sn-1+3SnSn-1=0,即
-
=3(n≥2)…(2分)
又a1=
,∴
=3,
∴{
}是以3为首项,以3为公差的等差数列,
∴
=3+3(n-1)=3n,∴Sn=
.
当n≥2时,an=Sn-Sn-1=
-
=
,
∴an=
.
(2)∵bn=
,
∴b1=1,bn=
=n,n≥2,
∴Tn=
+
+…+
=
+
+…+
,
Tn+1=
+
+…+
+
+
,
∴Tn+1-Tn=
-
>0,
∴{Tn}是单调递增函数,
∴(Tn)min=T2=
+
=
,
∵Tn>m对n≥2恒成立,∴m<
.…(12分)
得Sn-Sn-1+3SnSn-1=0,即
| 1 |
| Sn |
| 1 |
| Sn-1 |
又a1=
| 1 |
| 3 |
| 1 |
| S1 |
∴{
| 1 |
| Sn |
∴
| 1 |
| Sn |
| 1 |
| 3n |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 3n |
| 1 |
| 3n-3 |
| 1 |
| 3n(1-n) |
∴an=
|
(2)∵bn=
|
∴b1=1,bn=
| 1 |
| 3(1-n)an |
∴Tn=
| 1 |
| b1+n |
| 1 |
| b2+n |
| 1 |
| bn+n |
| 1 |
| 1+n |
| 1 |
| 2+n |
| 1 |
| n+n |
Tn+1=
| 1 |
| 1+n+1 |
| 1 |
| 2+n+1 |
| 1 |
| n-1+n+1 |
| 1 |
| n+n+1 |
| 1 |
| n+1+n+1 |
∴Tn+1-Tn=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴{Tn}是单调递增函数,
∴(Tn)min=T2=
| 1 |
| 1+2 |
| 1 |
| 2+2 |
| 7 |
| 12 |
∵Tn>m对n≥2恒成立,∴m<
| 7 |
| 12 |
点评:本题考查数列的通项公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意数列的单调性的合理运用.
练习册系列答案
相关题目