题目内容

在数列{an}中,a1=6,且an-an-1=
an-1
n
+n+1
(n∈N*,n≥2),数列{
1
an
}的前n项和为sn,则S10=
 
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:根据数列的递推关系构造等差数列{
an
1+n
},求出数列的通项公式,利用裂项法进行求和即可.
解答: 解:由an-an-1=
an-1
n
+n+1
(n∈N*,n≥2),
得an=
(1+n)
n
an-1+(n+1),(n∈N*,n≥2),
an
1+n
=
an-1
n
+1,
即{
an
1+n
}是以
a1
2
=
6
2
=3
为首项公差d=1的等差数列,
an
1+n
=3+n-1=n+2,
即an=(n+2)(n+1),
1
an
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

则S10=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
11
-
1
12
=
1
2
-
1
12
=
5
12

故答案为:
5
12
点评:本题主要考查数列的求和的计算,根据数列的递推关系构造等差数列,利用裂项法是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网