题目内容
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设直线PF1与圆x2+y2=a2相切于点M,取PF1的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理,可得|PF1|=4b,再由双曲线的定义和a,b,c的关系及离心率公式,计算即可得到.
解答:
解:设直线PF1与圆x2+y2=a2相切于点M,
则|OM|=a,OM⊥PF1,
取PF1的中点N,连接NF2,
由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,
由|NF2|=2|OM|=2a,
则|NP|=
=2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=c+a,
4b2=(c+a)2,即4(c2-a2)=(c+a)2,
4(c-a)=c+a,即3c=5a,
则e=
=
.
故选A.
则|OM|=a,OM⊥PF1,
取PF1的中点N,连接NF2,
由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,
由|NF2|=2|OM|=2a,
则|NP|=
| 4c2-4a2 |
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=c+a,
4b2=(c+a)2,即4(c2-a2)=(c+a)2,
4(c-a)=c+a,即3c=5a,
则e=
| c |
| a |
| 5 |
| 3 |
故选A.
点评:本题考查双曲线的方程和性质,考查离心率的求法,运用中位线定理和双曲线的定义是解题的关键.
练习册系列答案
相关题目
已知函数f(x)=Acos(ωx+θ)的图象如图所示,f(
)=-
,则f(-
)=( )
| π |
| 2 |
| 2 |
| 3 |
| π |
| 6 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
若实数x,y满足
则2x+y的最大值是( )
|
| A、3 | B、4 | C、6 | D、7 |