ÌâÄ¿ÄÚÈÝ
̽¾¿º¯Êýf£¨x£©=x+
ÔÚ£¨0£¬+¡Þ£©µÄ×îСֵ£¬²¢È·¶¨È¡µÃ×îСֵʱµÄxµÄÖµ£¬ÁбíÈçÏ£º
Çë¹Û²ì±íÖÐyËæxÖµ±ä»¯µÄÌØµã£¬Íê³ÉÒÔÏÂÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=x+
£¨x£¾0£©ÔÚ ÉÏÊǵ¥µ÷µÝ¼õ
£¨2£©º¯Êýf£¨x£©=x+
£¨x£¾0£©ÔÚ ÉÏÊǵ¥µ÷µÝÔö
£¨3£©µ±x= ʱ£¬f£¨x£©ÓÐ×îСֵΪ
£¨4£©¶ÔÎÊÌ⣨1£©Óö¨Òå·¨¸øÓèÖ¤Ã÷£®
| 4 |
| x |
| x | © | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | © |
| y | © | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 4.8 | 7.57 | © |
£¨1£©º¯Êýf£¨x£©=x+
| 4 |
| x |
£¨2£©º¯Êýf£¨x£©=x+
| 4 |
| x |
£¨3£©µ±x=
£¨4£©¶ÔÎÊÌ⣨1£©Óö¨Òå·¨¸øÓèÖ¤Ã÷£®
¿¼µã£ºº¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©£¨2£©£¨3£©¸ù¾Ý±í¸ñ¿ÉÇóµÃº¯ÊýµÄµ¥µ÷Çø¼ä£¬¸ù¾Ýµ¥µ÷ÐÔ¿ÉÇóµÃ×îСֵ£¬£¨4£©ÀûÓõ¥µ÷ÐԵ͍Òå¿É×÷³öÖ¤Ã÷£®
½â´ð£º
½â£º£¨1£©¸ù¾Ý±í¸ñ¿ÉÖª£¬f£¨x£©=x+
£¨x£¾0£©ÔÚÇø¼ä£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£¬
£¨2£©¸ù¾Ý±í¸ñ¿ÉÖª£¬f£¨x£©=x+
£¨x£¾0£©ÔÚ£¨2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
£¨3£©ÓÉ£¨1£©£¨2£©µÃ£ºx=2ʱ£¬f£¨x£©ÓÐ×îСֵf£¨2£©=4£¬
¹Ê´ð°¸Îª£º£¨1£©£¨0£¬2£©£»£¨2£¬+¡Þ£©£¬2£¬4£»
£¨4£©Ö¤Ã÷ÈçÏ£º
Éè2£¾x2£¾x1£¾0£¬
Ôòf£¨x2£©-f £¨x1£©=£¨x+
£©-£¨x+
£©=
£¬
¡ß2£¾x2£¾x1£¾0£¬¡àx2-x1£¾0£¬x1x2-4£¼0£¬
¡àf£¨x2£©-f £¨x1£©£¼0£¬¼´f£¨x2£©£¼f£¨x1£©£®
¡àf£¨x£©ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£®
| 4 |
| x |
£¨2£©¸ù¾Ý±í¸ñ¿ÉÖª£¬f£¨x£©=x+
| 4 |
| x |
£¨3£©ÓÉ£¨1£©£¨2£©µÃ£ºx=2ʱ£¬f£¨x£©ÓÐ×îСֵf£¨2£©=4£¬
¹Ê´ð°¸Îª£º£¨1£©£¨0£¬2£©£»£¨2£¬+¡Þ£©£¬2£¬4£»
£¨4£©Ö¤Ã÷ÈçÏ£º
Éè2£¾x2£¾x1£¾0£¬
Ôòf£¨x2£©-f £¨x1£©=£¨x+
| 4 |
| x2 |
| 4 |
| x1 |
| (x2-x1)(x1x2-4) |
| x1x2 |
¡ß2£¾x2£¾x1£¾0£¬¡àx2-x1£¾0£¬x1x2-4£¼0£¬
¡àf£¨x2£©-f £¨x1£©£¼0£¬¼´f£¨x2£©£¼f£¨x1£©£®
¡àf£¨x£©ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£®
µãÆÀ£º±¾Ì⿼²éº¯Êýµ¥µ÷ÐÔµÄÐÔÖʼ°ÆäÖ¤Ã÷£¬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬µãDΪBCµÄÖе㣬ÈôAB=
£¬AC=3£¬Ôò
•
=£¨¡¡¡¡£©
| 5 |
| BC |
| AD |
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |
Èôº¯Êýf£¨x£©=m+log2x£¨x¡Ý1£©´æÔÚÁãµã£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A¡¢£¨-¡Þ£¬0] |
| B¡¢[0£¬+¡Þ£© |
| C¡¢£¨-¡Þ£¬0£© |
| D¡¢£¨0£¬+¡Þ£© |