题目内容
8.设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.
分析 (I)由x2-4ax+3a2<0,其中a>0;化为(x-3a)(x-a)<0,解得x范围.q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$,化为:$\left\{\begin{array}{l}{-2≤x≤3}\\{x>2或x<-5}\end{array}\right.$,根据当p∧q为真,即可得出实数x的取值范围是(2,3).
(II)根据q是p的充分不必要条件,可得$\left\{\begin{array}{l}{3a>3}\\{a≤2}\end{array}\right.$,解得实数a的取值范围.
解答 解:(I)由x2-4ax+3a2<0,其中a>0;化为(x-3a)(x-a)<0,解得a<x<3a.a=1时,1<x<3.
q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$,化为:$\left\{\begin{array}{l}{-2≤x≤3}\\{x>2或x<-5}\end{array}\right.$,解得2<x≤3.
当p∧q为真,则$\left\{\begin{array}{l}{1<x<3}\\{2<x≤3}\end{array}\right.$,解得2<x<3.
∴实数x的取值范围是(2,3).
(II)∵q是p的充分不必要条件,∴$\left\{\begin{array}{l}{3a>3}\\{a≤2}\end{array}\right.$,解得1<a≤2.
∴实数a的取值范围是(1,2].
点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
| A. | 若a<b,则a-1<b-1 | B. | 若a-1>b-1,则a>b | C. | 若a≤b,则a-1≤b-1 | D. | 若a-1≤b-1,则a≤b |
| A. | -6 | B. | -2 | C. | 2 | D. | 6 |