题目内容

已知三点A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2,且0≤
OP
OB
≤2,则动点P到点C的距离小于
1
5
的概率为(  )
A、
π
20
B、1-
π
20
C、
19π
20
D、1-
19π
20
考点:几何概型
专题:概率与统计
分析:根据向量的数量积的坐标公式将不等式进行化简,作出不等式组对应的平面区域,利用几何概型的概率公式即可得到结论.
解答: 解:∵A(2,1),B(1,-2),C(
3
5
,-
1
5
),∴
OP
OA
=2a+b,且
OP
OB
=a-2b,
∵0≤
OP
OA
≤2,且0≤
OP
OB
≤2,∴0≤2a+b≤2且0≤a-2b≤2,
作出不等式组对应的平面区域如图:
∵点P到点C的距离小于
1
5

∴|CP|<
1
5
,则对应的部分为阴影部分,
a-2b=0 
2a+b=2
解得
a=
4
5
b=
2
5

即E(
4
5
2
5
),|OE|=
(
4
5
)2+(
2
5
)2
=
20
25
=
4
5

∴正方形OEFG的面积为
4
5
×
4
5
=
4
5

则阴影部分的面积为π×(
1
5
)2=
π
25

∴根据几何概型的概率公式可知所求的概率为
π
25
4
5
=
π
20

故选:A.
点评:本题主要考查几何概型的概率公式的计算,利用数量积将不等式进行转化,求出相应区域的面积是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网