题目内容

已知正项数列{an}满足:an2-(n2+n-1)an-(n2+n)=0(n∈N+),数列{bn}的前n项和为Sn,且满足b1=1,2Sn=1+bn(n∈N+).
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
(2n+1)bn
an
,数列{cn}的前n项和为Tn,求证:T2n<1.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件推导出[an-(n2+n)](an+1)=0,由此能求出an=n2+n;由2Sn=1+bn,得bn=-bn-1,由此能求出bn=(-1)n-1
(2)由cn=(-1)n-1
2n+1
n(n+1)
,推导出c2n-1+c2n=
1
2n-1
-
1
2n+1
,由此利用裂项求和法能证明T2n=1-
1
2n+1
<1.
解答: (1)解:∵an2-(n2+n-1)an-(n2+n)=0,
∴[an-(n2+n)](an+1)=0.(2分)
∵{an}是正项数列,∴an=n2+n.(3分)
∵2Sn=1+bn,∴当n≥2时,2Sn-1=1+bn-1,两式相减得bn=-bn-1,(5分)
∴数列{bn}是首项为1,公比-1的等比数列,∴bn=(-1)n-1,(7分)
(2)证明:∵cn=
(2n+1)bn
an
=(-1)n-1
2n+1
n(n+1)
,(8分)
∴c2n-1+c2n=
4n-1
2n(2n-1)
-
4n+1
2n(2n+1)

=
(4n-1)(2n+1)-(4n+1)(2n-1)
2n(2n-1)(2n+1)

=
2
(2n-1)(2n+1)
=
1
2n-1
-
1
2n+1
,(11分)
∴T2n=(c1+c2)+(c3+c4)+…+(c2n-1+c2n
=
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=1-
1
2n+1
<1.(14分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网