题目内容
已知正项数列{an}满足:an2-(n2+n-1)an-(n2+n)=0(n∈N+),数列{bn}的前n项和为Sn,且满足b1=1,2Sn=1+bn(n∈N+).
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
,数列{cn}的前n项和为Tn,求证:T2n<1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
| (2n+1)bn |
| an |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件推导出[an-(n2+n)](an+1)=0,由此能求出an=n2+n;由2Sn=1+bn,得bn=-bn-1,由此能求出bn=(-1)n-1.
(2)由cn=(-1)n-1•
,推导出c2n-1+c2n=
-
,由此利用裂项求和法能证明T2n=1-
<1.
(2)由cn=(-1)n-1•
| 2n+1 |
| n(n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
解答:
(1)解:∵an2-(n2+n-1)an-(n2+n)=0,
∴[an-(n2+n)](an+1)=0.(2分)
∵{an}是正项数列,∴an=n2+n.(3分)
∵2Sn=1+bn,∴当n≥2时,2Sn-1=1+bn-1,两式相减得bn=-bn-1,(5分)
∴数列{bn}是首项为1,公比-1的等比数列,∴bn=(-1)n-1,(7分)
(2)证明:∵cn=
=(-1)n-1•
,(8分)
∴c2n-1+c2n=
-
=
=
=
-
,(11分)
∴T2n=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)
=
-
+
-
+…+
-
=1-
<1.(14分)
∴[an-(n2+n)](an+1)=0.(2分)
∵{an}是正项数列,∴an=n2+n.(3分)
∵2Sn=1+bn,∴当n≥2时,2Sn-1=1+bn-1,两式相减得bn=-bn-1,(5分)
∴数列{bn}是首项为1,公比-1的等比数列,∴bn=(-1)n-1,(7分)
(2)证明:∵cn=
| (2n+1)bn |
| an |
| 2n+1 |
| n(n+1) |
∴c2n-1+c2n=
| 4n-1 |
| 2n(2n-1) |
| 4n+1 |
| 2n(2n+1) |
=
| (4n-1)(2n+1)-(4n+1)(2n-1) |
| 2n(2n-1)(2n+1) |
=
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴T2n=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)
=
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=1-
| 1 |
| 2n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知α是平面,m,n是直线,且m⊥α,则下列命题不正确的是( )
| A、若m∥n,则n⊥a |
| B、若n⊥α,则m∥n |
| C、若n∥α,则m⊥n |
| D、若m⊥n,则n∥α |
已知三点A(2,1),B(1,-2),C(
,-
),动点P(a,b)满足0≤
•
≤2,且0≤
•
≤2,则动点P到点C的距离小于
的概率为( )
| 3 |
| 5 |
| 1 |
| 5 |
| OP |
| OA |
| OP |
| OB |
| 1 |
| 5 |
A、
| ||
B、1-
| ||
C、
| ||
D、1-
|