题目内容
20.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程是$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<π)$,射线$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$与曲线C1交于极点O外的三点A,B,C.(1)求$\frac{|OB|+|OC|}{|OA|}$的值;
(2)当$ϕ=\frac{π}{12}$时,B,C两点在曲线C2上,求m与α的值.
分析 (1)依题意,|OA|=4cosφ,|OB|=4cos(φ+$\frac{π}{4}$),|OC|=4cos(φ-$\frac{π}{4}$),利用三角恒等变换化简|OB|+|OC|为4$\sqrt{2}$cosφ=$\sqrt{2}$|OA|,即可求出$\frac{|OB|+|OC|}{|OA|}$.
(2)当$ϕ=\frac{π}{12}$时,B,C两点的极坐标分别为(2,$\frac{π}{3}$),(2$\sqrt{3}$,-$\frac{π}{6}$).再把它们化为直角坐标,根据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=-$\sqrt{3}$(x-2),由此可得m及直线的斜率,从而求得α的值.
解答 解:(1)依题意,|OA|=4cosφ,|OB|=4cos(φ+$\frac{π}{4}$),|OC|=4cos(φ-$\frac{π}{4}$),…(2分)
则|OB|+|OC|=4cos(φ+$\frac{π}{4}$)+4cos(φ-$\frac{π}{4}$)=2$\sqrt{2}$(cosφ-sinφ)+2$\sqrt{2}$(cosφ+sinφ)=4$\sqrt{2}$cosφ=$\sqrt{2}$|OA|,
∴$\frac{|OB|+|OC|}{|OA|}$=$\sqrt{2}$.…(5分)
(2)当$ϕ=\frac{π}{12}$时,B,C两点的极坐标分别为(2,$\frac{π}{3}$),(2$\sqrt{3}$,-$\frac{π}{6}$).
化为直角坐标为B(1,$\sqrt{3}$),C(3,-$\sqrt{3}$).…(7分)
C2是经过点(m,0),倾斜角为α的直线,
又经过点B,C的直线方程为y=-$\sqrt{3}$(x-2),故直线的斜率为-$\sqrt{3}$,…(9分)
所以m=2,α=$\frac{2π}{3}$.…(10分)
点评 本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于中档题.
| A. | 4+2i | B. | 4+3i | C. | 4-2i | D. | 4-3i |
| A. | ±2 | B. | 3 | C. | 4 | D. | 8 |
| A. | π | B. | 2π | C. | 3π | D. | 4π |