题目内容
3.(1)${8^{-\frac{1}{3}}}-{(-\frac{5}{9})^0}+{[{(-2)^3}]^{\frac{2}{3}}}$(2)$\frac{1}{2}lg25+lg2-lg\sqrt{0.1}$.
分析 (1)利用指数函数的运算性质即可得出.
(2)利用对数函数的运算性质即可得出.
解答 解:(1)原式=${2^{-1}}-1+4=\frac{7}{2}$.
(2)原式=$\frac{1}{2}lg{5^2}+lg2-lg{(\frac{1}{10})^{\frac{1}{2}}}={l}g5+lg2+\frac{1}{2}=\frac{3}{2}$.
点评 本题考查了指数函数与对数函数的运算性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
14.曲线的切线方程与直线6x-3y+1=0相互垂直,其中x的取值为非正数且曲线的方程为f(x)=2x3+x2-x(x2-1),则曲线的切线方程为( )
| A. | 2x+y+1=0 | B. | 2x+y-1=0 | C. | 2x-y-1=0 | D. | 2x-y+1=0 |
15.已知a=sin80°,$b={(\frac{1}{2})^{-1}}$,$c={log_{\frac{1}{2}}}3$,则( )
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
12.减函数f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,则实数a的取值范围是( )
| A. | -1<a<$\frac{1}{5}$ | B. | a<-1或a>$\frac{1}{5}$ | C. | a>$\frac{1}{5}$ | D. | -1<a<0 |