题目内容

12.(1-x)(1+$\frac{1}{\sqrt{x}}$)8的展开式中x-3的系数为(  )
A.30B.29C.28D.27

分析 由于(1+$\frac{1}{\sqrt{x}}$)8的通项公式为C8rx${\;}^{-\frac{r}{2}}$,再根据题意可得r=6,或r=8时满足,求出即可

解答 解:由于(1+$\frac{1}{\sqrt{x}}$)8的通项公式为C8rx${\;}^{-\frac{r}{2}}$,
由(1-x)(1+$\frac{1}{\sqrt{x}}$)8的展开式中x-3则当r=6时,或当r=8,
故(1-x)(1+$\frac{1}{\sqrt{x}}$)8的展开式中x-3的系数为C86-C88=28-1=27,
故选:D

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网