题目内容
14.已知数列{an}的前n项和为Sn,且$\left\{{\frac{S_n}{n+1}}\right\}$是首项和公差均为$\frac{1}{2}$的等差数列.(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{{{a_{n+1}}^2+{a_{n+2}}^2}}{{{a_{n+1}}•{a_{n+2}}}}$,求数列{bn}的前n项和Tn.
分析 (1)$\left\{{\frac{S_n}{n+1}}\right\}$是首项和公差均为$\frac{1}{2}$的等差数列,可得$\frac{{S}_{n}}{n+1}$=$\frac{n}{2}$,即Sn=$\frac{n(n+1)}{2}$.利用递推关系即可得出an.
(2)${b_n}=\frac{{{a_{n+1}}^2+{a_{n+2}}^2}}{{{a_{n+1}}•{a_{n+2}}}}$=$\frac{(n+1)^{2}+(n+2)^{2}}{(n+1)(n+2)}$=$\frac{n+1}{n+2}$+$\frac{n+2}{n+1}$=2+$\frac{1}{n+1}$-$\frac{1}{n+2}$,利用裂项求和方法即可得出.
解答 解:(1)∵$\left\{{\frac{S_n}{n+1}}\right\}$是首项和公差均为$\frac{1}{2}$的等差数列,∴$\frac{{S}_{n}}{n+1}$=$\frac{1}{2}+\frac{1}{2}(n-1)$=$\frac{n}{2}$,∴Sn=$\frac{n(n+1)}{2}$.
∴n=1时,a1=S1=1;
n≥2时,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.n=1时也成立.
∴an=n.
(2)${b_n}=\frac{{{a_{n+1}}^2+{a_{n+2}}^2}}{{{a_{n+1}}•{a_{n+2}}}}$=$\frac{(n+1)^{2}+(n+2)^{2}}{(n+1)(n+2)}$=$\frac{n+1}{n+2}$+$\frac{n+2}{n+1}$=2+$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴数列{bn}的前n项和Tn=2n+$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$
=2n+$\frac{1}{2}$-$\frac{1}{n+2}$.
点评 本题考查了数列递推关系、等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.
| A. | $\frac{3}{8}$ | B. | $\frac{5}{9}$ | C. | $\frac{7}{10}$ | D. | $\frac{5}{8}$ |
| A. | (-∞,0] | B. | (-∞,2] | C. | 10,+∞) | D. | 12,+∞) |