题目内容
8.数列{an}的前n项和为Sn,若${a_n}=\frac{1}{(n+1)(n+2)}$,则S8=$\frac{2}{5}$.分析 首先对通项公式裂项,再求和.
解答 解:${a_n}=\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
S8=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+…+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}$=$\frac{4}{10}=\frac{2}{5}$;
故答案为:$\frac{2}{5}$.
点评 本题考查了数列的裂项求和;属于基础题.
练习册系列答案
相关题目
18.已知定义在R上的奇函数f(x),当x≥0时,f(x)单调递增,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是( )
| A. | (-∞,-$\sqrt{2}$) | B. | (-$\sqrt{2}$,0) | C. | (-∞,0)∪($\sqrt{2}$,+∞) | D. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) |
19.对于下列表格所示的五个散点,已知求得的线性回归直线方程为$\stackrel{∧}{y}$=0.8x-155.
则实数m的值为12.
| x | 197 | 198 | 201 | 204 | 205 |
| y | 1 | 3 | 6 | 7 | m |
16.若点P对应的复数z满足|z|≤1,则P的轨迹是( )
| A. | 直线 | B. | 线段 | C. | 圆 | D. | 单位圆以及圆内 |
3.下表是某厂改造后产量x吨产品与相应生产能耗y(吨)的几组对照数据:
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)已知技术改造前生产100吨该产品能耗90吨,试根据所求出的回归方程,预测生产100吨该产品的生产能耗比改造前降低多少吨?
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,则表中m的值为( )
| x | 3.5 | 4.5 | 5.5 | 6.5 |
| y | 3 | 4m | 4 | 5 |
| A. | 1 | B. | 0.85 | C. | 0.95 | D. | 0.9 |