题目内容

(1)设等差数列的前n项和为Sn,前2n项和为S2n,前3n项和为S3n.求证:S3n=3(S2n-Sn
(2)试推广上述结论,并予以证明.
考点:等差数列的性质
专题:等差数列与等比数列
分析:(1)设出等差数列的首项为a1,公差为d,然后利用等差数列的前n项和公式代入等式左右两边得答案;
(2)推广结论:S(2k+1)n=(2k+1)(S2kn-S(2k-1)n).利用(1)中的方法加以证明.
解答: 证明:(1)设等差数列的首项为a1,公差为d,则
S3n=3na1+
3n(3n-1)d
2
S2n=2na1+
2n(2n-1)d
2
Sn=na1+
n(n-1)d
2

3(S2n-Sn)=3(2na1+2n2d-nd-na1-
n2d
2
+
d
2
)
=3na1+
9n2d-3nd
2
=3na1+
3n(3n-1)d
2

∴S3n=3(S2n-Sn);
(2)推广上述结论得:S(2k+1)n=(2k+1)(S2kn-S(2k-1)n).
证明:S(2k+1)n=(2k+1)na1+
(2kn+n)(2kn+n-1)d
2

(2k+1)(S2kn-S(2k-1)n)=(2k+1)[2kna1+
2kn(2kn-1)d
2
-(2kn-n)a1-
(2kn-n)(2kn-n-1)d
2
]

=(2k+1)[na1+
n(2kn+n-1)d
2
]
=(2k+1)na1+
(2kn+n)(2kn+n-1)d
2

∴S(2k+1)n=(2k+1)(S2kn-S(2k-1)n).
点评:本题考查了等差数列的性质,考查了等差数列的通项公式,考查了计算能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网