题目内容

11.将函数f(x)=sin(2x+ϕ),$(|ϕ|<\frac{π}{2})$的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数g(x)的图象,则函数g(x)的一个减区间为(  )
A.$[{-\frac{π}{4},\frac{π}{4}}]$B.$[{-\frac{π}{2},0}]$C.$[{0,\frac{π}{2}}]$D.$[{\frac{π}{4},\frac{3π}{4}}]$

分析 利用函数的图象变换即三角函数的性质得出g(x)的解析式,利用余弦函数的性质得出g(x)的减区间.

解答 解:将f(x)的图形向左平移$\frac{π}{8}$个单位后得到函数g(x)=sin[2(x+$\frac{π}{8}$)+Φ]=sin(2x+$\frac{π}{4}$+Φ),
∵g(x)是偶函数,
∴$\frac{π}{4}$+Φ=$\frac{π}{2}+kπ$,即Φ=$\frac{π}{4}$+kπ.
∵|Φ|≤$\frac{π}{2}$,∴Φ=$\frac{π}{4}$.
∴g(x)=sin(2x+$\frac{π}{2}$)=cos2x.
令2kπ≤2x≤π+2kπ,解得kπ≤x≤$\frac{π}{2}$+kπ.
当k=0时,g(x)的减区间为[0,$\frac{π}{2}$].
故选:C.

点评 本题考查了三角函数的诱导公式,三角函数的性质,余弦函数的单调区间,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网